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I N  D I S K  U N I T S  O F  T H E  W I N C H E S T E R  T Y P E  
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The main elements of disk units are a rotating disk and a magnetic head (slider) sliding at a small 
altitude over the disk surface. A thin air layer prevents contact between the slider and the disk and creates 
conditions for the stable flight of the slider at a given altitude. Obviously, mathematical  modeling of the 
slider-air layer-disk system is an indispensable step in the general program of disk unit design. There are no 
systematic investigations on this topic in Russia. Foreign publications over the last 5-7 years bear witness to 
the extensive theoretical studies on this topic, but they do not contain full information, and most of all, do 
not contain program realization, and therefore cannot be considered "know how" [t-3]. 

Three problems were distinguished in the theoretical consideration: 1) stationary flight of the slider; 
2) slider dynamics under periodical and shock external actions and during transition between the tracks; 
3) contact interactions between the slider and the disk in the processes of taking off and landing. The present 
paper deals with the first two problems. 

The geometry of a standard slider is shown in Fig. 1, where U, V are the longitudinal and transversal 
velocities of the slider relative to the disk; a, b, c, d, and e are the geometrical parameters of the slider; r is 
the attack angle; r r are the slope angles of the slider relative to the disk plane; ~b3 is the rotation angle of 
the slider in the disk plane; m, J1, J2, ,/3 are the mass and inertia momenta of the slider; F,/1//1, M2, M3 are 
the force and force momenta  acting on the head from the elastic bearing; P, L1, L2, L3 are the aerodynamic 
force and force momenta,  applied to the head from the air layer side; xF, YF is the application point of the 
elastic force F; and h(x, y, t) is the air layer thickness (clearance). 

The nonstationary flow of a viscous gas in a thin layer taking into account the molecular sliding on 
the boundary surfaces is described by the Reynolds equation [4, 5] 

Sh O(h(lot + p)) + O(h(lox + p)) + fl O(h(loy + p)) = r h2(h + a + hp)-~x + 5 h2(h + a + hp) . (1) 

Here p(x, y, t) is the sought function denoting the dimensionless excessive pressure in the air layer; Sh = 2a/UT 
is the Strouhal number; ~ = h2po/6ttUa is the compression number; a = 6A0/h0 is the coefficient of sliding; 

= a V/b U; 5 = (a/b)2e; po is the air pressure in the disk unit volume; # is the air viscosity; A0 is the free 
path length of molecules; h0 is the clearance in the outlet section; and T is the t ime scale defined below. 

The boundary conditions for Eq. (1) are 

p = 0  at x = 0 ,  x = l ,  
p = 0  at y = 0 ,  y = l .  (2) 

The thickness of the air layer (taking into account the attack angle at the entrance) is given by 

h(x ,y , t )  =h( t )  + r - z)  + r  - x) =t= r - y), 0 < x  < d/a,  

h ( x , y , t ) = h ( t )  + r  x) ~ r  y), d/a ~<x~< l, 0~<y~<l. (3) 

The upper sign in (3) corresponds to the outer ski of the slider; the lower one corresponds to the inner ski. The 
solution of the complicated boundary value problem (1)-(3) is obtained by the finite-element method (FEM). 
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Fig. 1 

The flow region is divided into rectangular cells (elements). The pressure variables Pit(t) are introduced in 
the nodes, after which the following approximations are used: 

n l  n2 n l  u2 

p(x, y,t) = ~ ~ pij(~l~(xl~(y), p~(~, y,t) = ~ ~ p~s(t) ~(~1 ~3.(y), (4) 
i=I 3=1 i=l j--1 

where wi(x) axe the Courant functions of the "hat" kind; n l ,n2  are the numbers of the internal nodes along 
the x and y axes respectively. Representations (4) take into account boundary conditions (2). The standard 
FEM procedure applied to Eq. (1) yields a system of nonlinear ordinary differential equations 

d n l  n2 

-'~Pr, = ~ ~_,(L;] pij + QiTpi})- nr,, 
i=l j=l 

1 ~ r ~ n l ,  l ~ q ~ n 2 .  (5) 

The elements of the L and Q matrices are rather cumbersome and are omitted here. For numerical integration 
of (5) by means of the Runge--Kutta method, it is necessary to specify initial conditions. If the motion of the 
slider begins from a certain stationary state, the corresponding stationary pressure distribution in the nodes 
should be taken as" the initial conditions: 

p,i = p!O) at , = 0. (6) 

The system (5) of differential equations can be used for studying the stationary flight or periodical motion of 
the slider by the stationaxity method. In these cases one can specify zero initial conditions for the pressure 

Pij=O at t = 0 ,  (7) 

and solutions to the formulated problems axe to be obtained at t ---* oo. Stationary flow can also be examined 
with the help of a system of nonlinear algebraic equations: 

n l  n2 
rq . .  rq 2 ~_,(Lqp,,+Oqpq)=R~q, l ~ < r ~ < n l ,  l < q ~ < n 2 .  (8) 

7=1 j=l 

We shall construct its solution by means of Newton's iteration method, taking conditions (7) as an initial 
approximation. The pressure found in the nodes allows one to determine the lifting aerodynamic force and 
force moments that act on the slider from the side of the air layer: 

1 1 nl n2 

i i <',': 
0 0 i=1 j= l  

1 1 nZ n2 

0 0 i = l  j = l  
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1 1 nl  n2 

 ,/po o', : z 
0 0 i=l  j=l 

L3 = ((V + U Ca)eel - a (ha ee2)t t a 2 b/ho - r - P x r ) / 2 ,  

f f  ( x f - x ) ; / 3 d x d y  (i = 1,2). 
0 0 

Here (xi, YJ) are the ( i , j ) - th  node coordinates, and aij is the area of finite elements. 
The access arm (elastic bearing) sets the slider on a definite track and provides the pressing force F0, 

which acts at the point (xF, YF)- The bearing schematic is shown in Fig. 2, where O A F  is an elastic console 
beam, A B  is an elastic beam fixed at both ends, and D F  is a stiff spherical joint. The bearing provides four 
degrees of freedom of the slider, namely, the vertical shift h(t)  and the rotation angles r r r 
relative to the x, y, and z axes. The arm is calculated by methods of material resistance with regard for 
simultaneous translations at points F and D. This allows one to obtain the following equations for the slider 
motion under the action of aerodynamic and elastic forces: 

~ h  + ~Ar = P - F - m g  kl(t), 

J2 ~b2 - L2 - M2 - k2(t)mge,  

gA h + jA r = L I  - M1  - ~A g kl(t), 
J3~3 = L3 - 71//3 - k 2 ( t ) m g ( z c  - x f ) .  

(9) 

Here ~ ,  SA, and ~A are the reduced mass, static, and inertia moments relative to point A for the bearing-slider 
system; ki(t) are the overload coefficients along the z and y axes (i = 1,2); M] = Fo~f  -}- h610 -~ ~1Cll; 
~i2 ---- C2r -t- F0YF; M3 -- C3r (C0, C10, Cll, C2, 03 are the effective stiffnesses of the bearing which can 
be either calculated or found experimentally). 

Since the aerodynamic forces depend essentially on the slider motion, systems (5) and (9) of differential 
equations should be combined and integrated together, and initial conditions (6) should be supplemented by 
the following ones: 

h = h 0 ,  h = h l ,  r 1 6 2  r ' = r  ( i = 1 , 2 , 3 )  at t = 0 ,  

where h0,0i0 are the parameters of the initial position from which the slider motion begins; hi, r are the 
initial linear and rotation velocities, caused by shock actions on the-slider. For the stationary problem we 
obtain from (9) the algebraic system 

P - F - ~ g k a  = 0 ,  L1 - M 1  - - ~ A g k l  = 0 ,  

L2 - M2 - k 2 ~ g e  = O, La - M3 - k 2 r n g ( x v  - xF) = O, 

which should also be combined with system (8) and solved jointly by Newton's iteration method. However, 
specifying an initial approximation presents difficulties and requires certain skill. 
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The algorithms proposed for solving the stationary and dynamic problems have been performed as a 
PC program package. These programs can be used both for calculating sliders of existing constructions and 
for designing new types of sliders. Let us discuss some results for a slider with the following parameters (see 
Fig. 1): 

a = 4 m m ,  b = 0 . 6 5 m m ,  c = 3 . 3 5 m m ,  d = 0 . 4 m m ,  e = 0 . 6 5 m m ,  

m = 0.074 g, J] = 0.4 g. mm 2, ,/2 = 0.07 g. mm 2, ,/3 = 0.17 g. mm 2, 

= 0.091 g, S'A = 0.182 g .mm,  ~A = 0.47 g - m m  2, 

Co = 1.5 g /mm, C10 = 4.5 g, Czl -- 42 g. mm/rad ,  C2 = 40 g. mm/rad ,  

F0 = 10 g, :co = 2 mm, YF = 0, ~b0 = 15 mrad. 

The physical parameters of the air in the disk unit chamber axe as follows: 

# = 0.00018 P, A0 = 0.069 #m, p0 = 10.3 g/ram 2. 

In Figs. 3 and 4, the output clearance h and the slope angle r axe plotted as functions of the disk 
velocity for two positions of the force application point x f  = 1.9 and 1.7 mm (YF = 0 for both cases). The shift 
of the force application point toward the outlet section increases the angle r and decreases the clearance. In 
the real region of the flight velocities 10-20 m/sec, the relative slot vaxiation is within 40%. 

Figures 5 and 6 can be useful in analyzing the disk unit operation under nonstandard conditions (on 
mobile and high-altitude objects). Figure 5 presents the clearance variation as a function of the pressure inside 
the camera, and Fig. 6 shows the dependence of the slot on the overload coefficient along the z axis. In both 
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cases one can conclude that the altitude of the slider flight remains normal over a wide range of variations of 
the corresponding parameters. 

The slider dynarSics under shock actions is shown in Fig. 7. The initial state is the stationary flight of 
the slider at a velocity of 16 m/sec, which corresponds to h = 0.42 #m, r = 0.17 mrad, r = 0, r = 0. On 
account of a shock pulse, the slider gains the initial velocities h = 10 mm/sec, r = 5 rad/sec, ~2 = 10 rad/sec. 
By virtue of the energy dissipation in a viscous gas, the slider oscillation amplitude is damped with time. 
The duration of the transient stage, after which the amplitude decreases by an order of magnitude relative 
to the maximal one, is about 1 msec. This important quantity characterizes the time it takes for the slider to 
return to normal operation. Also, note the high frequency vibration of the slider with a period r = 55 #see, 
which does not depend on the intensity of the initial perturbation and is the period of natural oscillations of 
the bearing-slider-air layer-disk system. Despite a rather strong shock, no collision occurs between the slider 
and the disk since the flight velocity is high enough. But at low velocities of the slider during taking off and 
landing, the stiffness of the air layer significantly decreases, resulting in collisions between the slider and the 
disk. 

Figure 8 shows the slope angle oscillations r caused by transitions of the slider between tracks. Here 
the particular case where the force application point coincides with the mass center of the slider (XF = z c ,  

the rotation angle r = 0) is calculated. The change in transversal velocity is taken in the form V = 
0.157 sin(~rt) m/sec, which corresponds to a transition time of 1 msec and a distance between the tracks of 
100 #m. The acceleration leaps at the initial and finite moments (50g) excite the damping oscillations of the 
slider, whose amplitude decreases by one order of magnitude per 0.5 msec (decrement about 0.8). 

Figure 9 shows the influence of periodic perturbations (vertical vibration of the whole system) on 
the slider clearance magnitude. Here the dependence of the oscillation amplitude on the vibration frequency 
(maximum overload 10g) is shown. As might be expected, the curve maximum corresponds to the frequency 
of free oscillations mentioned above (18,000 Hz). The forced oscillations at this frequency (including those of 
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sound origin) are the most dangerous for the slider normal operation. 
Of course, these results do not give a complete analysis of the slider behavior under various conditions 

and only illustrate the potentialities of the theory and program, which are offered to interested persons and 
organizations. 
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